
SECu_,rYC_SS,_,C.AT_NO_ T_;_S_AGE
III I

i REPORTDOCUMENTATION PAGE ! -1l. REPORTSECURITYQ.A3SIFICATION / lb. RESTRICTIVEMARKINGS '"

I Unclasslfied • I None ' ._
| 2,111:SECURITYCLASSIFICATIONAUTHOfIJTY I]" OISTRIBUTIONIAVAJLABIUTYOF REPORT '

none
Approved for public release;

2b. OECLAS$1FH'.AT_I'DOWN4_SADINGSCHEDULE distribution unllm1_ed
none

m

4. PERFORMINGORGANIZATIONREF_)R'TNUMBER(S) S. MONITORINGORGANI_TION REPORTNUMBER(S)
CSG-123 none

UILU-ENG-90-2215

6..NAME OF PERFO_ ORGANIZATION 16b.OF_K_ SYMBOL 7a.NAME OF MONITOmNG ORGAN_T_N

Coordinated Science Lab " I Qf_) NSF, NCR, NASA, ONRUniversity of Illinois N/A
|i I I

,mORESS(C_..stm,_ z_,c_) _ AOORESS(C_,stm, .n_z_c_'
NSF:-I8_0 G. Street, Washington, DC 20552

ii01 W. Springfield Avenue NCR: Rersonal Computer Div.-Clemson

Urbana, IL 61801 1150 Anderson dr., Liberty, SC 29657

same as 7a. NASA: NASA NAG 1-613, 0NR: N0001_-88-K-0656
iii i

AOORESS(CA_,S_,K_ nPCoe_) m. SOURCE OF FUNO_NG NUMBERS

same as 7b ELEMENTNO. NO. . ACCESSIONNO.

....i. TITLE(Incluo_ Secunt7Cli_sificatlon)

Efficient !nstruction Sequencing with Inline Target Insertion

....12. PERSONALAUT
Hwu, Wen-mei W. Chang, Pohua P.

i i

I t
'16. SUPPLEMENTARYNOTATION

none
i

17 C,OSATICODES 18. SUBJECTTERMS(Co_m_ o_ reve_l if _eotl_ry #nd icien_fy by block number)
FIELD GROUP SUB-GROUP

Inllne Target Insertion, pipeline implementation,

•Branch Target Buffers, pipelining
i i

:gTheABSTRACTtrend(C_o_eep"onpipen_mnmng__ _ec,s_ara_nOmu_Ip_e" bYinstructlon_dunbar) issue has made instruction sequencing

an extremely critical issue. Traditionally, compiler-assisted instruction sequencing methods

have been considered not suitable for deep pipelining and multiple instruction issue. Hard-

ware methods such as Branch Target Buffers have been proposed for deep pipelining and multiple

instruction issue This paper defines Inline Target Insertion, a specific compiler and

pipeline implementation method for Delayed Branches with Squashing. THe method is shown to

offer two _mportant features not discovered in previous work. First, branches inserted into

branch slots are correctly executed. Therefore, the instruction sequencing efficiency is

limited solely by the accuracy of compile-time branch prediction. This feature coupled with

highly accurate compile-time branch prediction gives Inline Target Insertion excellent per-

formance'characteristics. Second, the execution return" correctly from interrupts or

exceptions with only one single program counter. There is no need to reload other sequencing

pipeline state information. These two features make Inline Target Insertion a superio:

al_ernatlve (better performance and less software/hardwace complexity) to the conventional

20. DISTRIBUTION/AVAILABIUTYOFABSTRACT ' J21. ABSTRACTSEL_JI_TY'CLASSIFICATION --
I_IUNCLASSIFIEDAJNUMITED[] SAMEAS RPT. [_DT1C USERSI Unclassified

22". NAIVEOF RESPONSIBLEINDIVIDUAL I22b.TELEPHONE0ndude _U_,Code) I 22C.OFFICESYMBOL --
I I II

OD FORM 1473.84 MAR B3APRedmonm.y t_ usedun_lexh.uned. SECUmTY(r_SSIF,CATIONOF THISPAGE
All othereditions_reobso_.

UHCLASS IFIED

1990018032

UNCLASSIFIED

IlCUm'I"Y CLAIIII_CA_ON O+ ?Nll P&OI
i iiiii i i III i i i l

lb. NASA Langle Research CenPer, Hampton, VA 23665 P

Office of Naval Research, 800 N. Quincy, Arlington, VA 22217

19. !

delayed branching mechanisms. The compiler part of Inline Target Insertion has been

shown to be straightforward with an implementation in the IMPACT-I C Compiler. A

new _ode expansion control method has been proposed and included in the implementation

The code expansion and instruction sequencing efficiency are measured for real UNIX

and CAD programs. The size of programs, the variety of programs, and the variety of

inputs to each program are significantly larger than those used in the previous
experiments. The stability of code restructuring based on profile information is

proved empirically using a large number of diverse inputs to each benchmark

program. The results show that Inline Target Insertion achieves high sequencing
efficiency at a small cost of code expansion for deep pipelining and multiple
instruction issue.

Accession ForNTIS GRA&I

DTIC TAB [] {
Unaru_ounced _.-]
Justlflca%lon -- I

- I
By_ - -

Distrlbu%Ion/___ i

Availablilty Codes IIAva_.!and/or

Dist. ! Special I

\1 i l

I +t, I
+ ,,,

¢ +

I ++_+_l. .,

.... |

__ D_C.LASSIFIED
SECU _TY CLASSIFICATION OF THIS PAGE

1990018032-002

Efficient i[nstruction Sequencing with ?niine Target Insertion

Wen-mei W. Hwu Pohua P. Chang

Center for Reliable and High-Performance Computing

University of nlinois

h_1@csg, uiuc.edu

\
April 11,199P

'\
\ Abstract

\

The trend of deep pipelining and multiple instruction issue has made instruction sequenc-

ing an extremely critical issue. Traditionally, compiler-a_isted instruction sequencing methods

have been considered not suitable for deep pipelining and multiple instruction issue. Hardware

methods such. as Branch Target Buffers hELvebeen proposed for deep pipelining and multiple

instruction issue. This paper defines Inline Target Insertion, a specific compiler and pipeline

impler, entation method for Delayed Branches with Squashing. LThe method is shown to offer /7_/_,

two important features not discovered in previous work. First, branches inserted into branch

slots are correctly executed. Therefore, the instruction sequencing efficiency is limited solely

by the accuracy of compile-time branch prediction. This feature coupled with highly accurate

compile-time branch prediction gives Inline Target Insertion excellent performance character°

istics. Second, the e_ecution returns correctly from interrupts or exceptions with only one

single program counter. There is no need to reload other sequencing pipeline state information.

These two features make Inline Target Insertion a superior alternative (better performance and

1990018032-003

\
\
\

lesssoftware/hardwarecomplexity)to the conventionaldelayedbranchingmechanisms.The

compilerpartofInlineTargetInsertionhas beenshown tobe straightforwardwithan imple-

mentationin the IMPACT-I C Compiler. A new codeexpansioncontrolmethod has been

proposedand includedintheimplementation.The codeexpansionand instructionsequencing

efliciencyaremeasuredforrealUNIX and CAD programs.The sizeofprograms,thevariety

ofprograms,and thevarietyofinputstoeachprogramaresignificantlylargerthanthoseused

inthepreviousexperiments.The stabilityofcoderestructuringbasedon profileinformation

isprovedempiricallyusinga largen_mber ofdiverseinputstoeachbenchmark program.The

resultsshow thatInlineTargetInsertionachieveshighsequencingefficiencyat a smallcostof

_o._0x_n.onfo._ _,in_n._m.l,i_loin._ru_,ion_ooS,_C_)_---

1990018032-004

1 Introduction

The instructionsequencingmechanismofaprocessordeterminestheinstructionstobe fetchedfrom

thememory systemforexecution.Intheabsenceofbran,_h:ustructions,theinstructionsequencing

mechanismkeepsrequestingthenextsequentialinstructionsinthelinearmemory space.In this

sequentialmode, itiseasyto maintaina steadysupplyof instructionsforexecution.Branch

instructions,however,disruptthesequentialmode of instructionsequencing.Without special

hardwareand/orsoftwaresupport,branchescan significantlyreducetheperformanceofpipelined

processorsby breakingthesteadysupplyofinstructionstothepipeline[Kogg81].

Many hardwaremethods forhandlingbranchesin pipelinedprocessorshave been studied

[Smith81] [Lee84] [DeRo88] [McFa3_] [Hsu86] [Ditz87]. An important class of hardware meth-

ods, called Branch Target Buffers (or Branch Target Caches), employ buffering and extra _ogic to

detect branches at an early stage of the pipeline, predict the branch direction, fetch instructions ac-

cording to the prediction, and scratch the instructions fetched due to an incorrect prediction[Lee84].

Branch Taxget Buffers have been ad,mted by many commercial processors [Lee84][Hors90][Amd].

The performance of the hardware methods is determined by their capability to detect the branches

early and to predict the branch directions accurately. High branch prediction accuracy, about

85-90% hit ratio, has been reported for hardware methods[Smith81][Lee84][McFa86]. They do not

require recompilation or binary translation of existing code. However, the hardware methods suffer

from the disadvantage of requiring a large amount of fast hardware to be effective[Lee84][Hwu89a].

Their effectiveness is also sensitive to the frequency of context switching [Lee84].

Compiler-assisted methods have also been proposed to handle branches in pipelined proces-

sors. For example, d_lay_d branching has been a popular method to absorb branch delay in

1990018032-005

microsequencers of microprogrammed microengines. This technique has also been adopted by

many recent processor architectures including IBM 801[Rodin 82], Stanford MIPS[Henn81], Berke-

ley RISC [Patt82], HP Spectrum [Birn86], SUN SPAR,C [Sun87], MIPS R.2000 [Kane87], Motorola

88000[Mele89], AMD 29000[Amd], and Intel i860[Inte89]. In this approach, instruction slots imme-

diately after a branch are reserved as the delay slots for that branch. The number of delay slots

has to be large enough to cover the delay for evaluating the branch direction. During compile-time,

the delay slots following a branch are filled with instructions that are independent of the branch

direction, if the data and control dependencies allow such code movement[Gros82]. Regardless of

the branch direction, these instructions in the delay slots are always executed. McFarling and Hen-

nessy reported that the first delay s!ot can be successfully filled by the compiler for approximately

70% of the branches, and the second delay slot can be filled only 25% of the time[McFa86]. It is

clear that delayed branching is not effective for processors requiring moIe than one slot.

Another compiler-assisted method, called Delayed Branches with Squashing, has been adopted

by some recent processors to complement delayed branching[McFa86][Hi!186][Chow87] [Mele89].

That is, the method is used when the compiler cannot fill the delay slots for delayed branching.

In this scheme, the number of slots after each branch still has to be large enough to cover branch

delay. However, instead of moving independent instructions into branch delay slots, the compiler

can fill the slots with the predicted successors of _he branch. If the actual branch direction differs

from the prediction, the instructions in the branch slots axe scratched (squashed) from the pipeline.

On the least expensive side, the hardware predicts all c_,nditional branches to be either always

taken (as in Stanford MIPS-X [Chow87!) or always not-taken (as in Motorola 88000 [Mele89]). Pre-

dicting all the instructions to be taken achieves about 65% accuracy whereas predicting not-taken

does about 35%[SmithS1][Lee84] [Emer84]. The compiler simply fills the branch slots according

4

1990018032-006

!

|

!

i Scheme Hardwarefeatures CompilerfeaturesDelayedbranches None Fillslotswith

independentcode

i Delayedbranches UniformpredictionFillslotswithwithsquashing and squashing independentcodeor
predictedsuccessors

i Profileddelayedbranches Predictionbit Executionprofilingwithsquashing and squashing Fillslotswith
predictedsuccessors

I Table 1: A summary of delayed branching mechanisms.

I to the hardwareprediction.Predictingallthe branchesto be eithertakenor not takenlimits

I theperformanceof delayedbrancheswith Furthermore, the br_nchslotsfor
squashing. filling

predicted-taken branches require code copying in general. Predicting all branches to be taken can

I result in a large amount of code expansion.

I McFarlingand HennessyproposedProfiledDelayedBrancheswithSquashing.Inthisscheme,

an executionprofilerisusedto collectthe d_,namicexecutionbehaviorofprogramssuchas the

I preferreddirectionofeachbranch[McFa_6].The profileinformationIsthen usedby a compile-

i timecoderestructurertopredictthebr_uchdirectionand tofillthebranchslotsaccordingtothe

prediction.Inordertoalloweachbranch*_be predicteddifferently,an additionalbittoindicatethe

I predicted direction is required in the branch opcode in general. Through this bit, the compiler can

I convey the prediction decision to the hardware. McFarling and Hennessy also _uggested methods

for avoiding adding prediction bit to the branch opcode. Using pipelines with e,le and two branch

I slots, McFarling and Hennessy showed chat the method can offer comparable performance with

I hardware methods at a much lower hardware cost. They suggested that the stability of using

execution profile information in compile-time code restructuring should be further evaluated.

!
5

!

1990018032-007

!

w

This paper examines the extension of McFarling and Hennessy's idea to processors employing B.

deep pipelining, multiple instruction issue, and high-bandwidth low-cost memory. These techniques

increase the number of slots for each branch. As a result, four issues arise. First, there are only W:

3 to 5 instructions between branches in the static program (see Section 4.2). In order to fill a i

large number of slots (on the order of ten), one must be aL.e to insert branches into branch slots, m

I
Questions arise regarding the correct execution t f branches in branch slots. Secona, the state

8
information of instruction sequencing becomes large. Brute force implementations of return from l

interrupts and exceptions can involve saving/restoring a large amount of state information of the

I
instruction sequencing mechanism. Third, the code expansion due to code restructuring can be very

large. It is important to control such code expansion without sacrificing performance. Fouxth, the i

number of bubbles created due to each incorrectly predicted branch is large. It is very important m

to show extensive empirical results on the performance and stability of using profile information

code restructuring. The first three issues were not addressed by McFarling and I
in compile-time

Hennessy [McFa86].
|

In order to address these issues, we have specified a compiler and pipeline implementation •

method for Delayed Branches with Squashing. We refer to this method as Inline Target Inser- I

tion to reflect the fact that the compiler restructures the code by inserting predictpd successors
|

of branches into their sequential locations. Based on the specification, we show that the m_-thod

exhibits desirable properties such as simple compiler and hardware implementation, proof of correct- i

ness, clean interrupt/exception return, moderate code expansion, ,rod high instruction sequencing

efficiency. Our correctness proof of filling branch slots with branch instructions is also applicable i

_o _ _reviously proposed hardware scheme [Pies87]. I

The paper is organized into five sections. Section 2 presents background and motivation for

I
6

!

1990018032-008

!
!
I Inline Target Insertion. Section 3 defines the compiler and pipeline implementation, proves the m_

i correctness of the proposea implementation, and suggests a clean method to return from interrupt
and exception. Section 4 provides empirical results on code expansion control and instruct_,¢ :_ ,

' sequencing efficiency. Section 5 offers concluding remarks regarding the cost-effectiveness an_. :i

i applicability of lnline Target Insertion.

I 2 Background and Motiva*,ion

i 2.1 Branch Instructions

Branch instructions reflect the decisions made in the program algorithm. Figure i(a) shows a C

" I program segment which findsthelargestelementofan array.There aretwo major decisionsin the

I lgorithm.One decidesifallthe elementshave been visitedand the other decidesifthe current

elementislargerthan allthe otherones visitedso fax.

I
(a): (b):

I Ma.xElement = 0; rl ,-- i

for (i = 0; i < IMax; i++) { r2 *- temporary tbr Array[i]
if (Array[i] > MaxElement) MaxElement = Array[i]; r3 *- IMax

I } "'" r4 _ Ma.xElement

I igure 1: (a) An example C program for finding the largest element in Array. (b) The registerassignment.

!
With the register allocation/assignment assumption in Figure l(b), a machine language program

i can be generated as given in Figure 2. There are three branches in the machine language program.

I Instruction D ensures that the looping condition is checked before the first iteration. Instruction I

checks if the loop should iterate any more. Instruction F determines if the current array element

[
7

[

1990018032-009

is larger than all the others visited so far.

(b)
A

B

(a) C
A:r4 _ 0

C: r3 ,-- IMax E

D: _otoI
E:r2 _ Array(rl) F

F: if (r2 > r4) _oto H 99% G 0% 100%

G: r4 *-- r2 H
H:rl*-- rl+ 1 _

I: if (rl < r3) _[oto E I -
J:MaxElement 4--r4 J

K:... K

l_igure 2: a) A machine language program generated from the C program shown in Figure 1. b) A
simplified view of the machine language program.

The simplified view of the machine lamguage program in Figure 2 h;ghlights the effect of

branches. Each arc corresponds to a branch where the head of an arc is the target instruction.

The percentage on each arc indicates the probability for the correJponding branch to occur in

execution. The percentages can be derived by program anaJysis and/or execution profiling. If

the -ercentage on an arc is greater than 50%, it corresponds to a likely branch. Otherwise, it

corresponds to an unlikely branch.

The instructions shown in Figure 2(a) are static instructions. These are the instructions gener-

ated by the compilers and machine language programmers. During program execution, each static

instruction can be executed multiple times due to loops. Each time a static instruction is executed,

it generates a dynamic instruction. The correct successors of a dynamic instruction I is defined as

1990018032-010

thedynamic instrutionstobe executedafterI as specifiedby the inst_.uctionsetarchitecture.The

kthcorrectsuccessorofI willbe denoted as S(I,k).A dynamic branck instructionwhich redirects
|

the instructionfetchiscalleda taken branch.

2.2 Instruction Sequencing for Pipelined Processors

The problems with u,struction sequencing for pipelined processors are due to the latency of de-

coding and/or executing branches. A simple hardware example suffices to illustrate the problem

of instruction sequencing for pipelined processors. The processor shown in Figure 3 is divided

into four stages: instruction fetch (IF), instruction decode (ID), instruction execution (EX), and

result write-back (WB). The instruction sequencing logic is implemented in the EX stage. The

sequencing _,ipeline consists of the IF, ID, and EX stages of the processor pipeline. When a

compaxe-and-branch 1 instruction is processed by the EX stage 2, the ic-truction sequencing logic

determines the next instruction to fetch from the memory system based on the compariscn result.

The dynamic pipeline behavior is illustrated by the timing diagram in Figure 4. The vertical

chm_,,A_,., givet_ the clock cycles and the horizontal dimension the pipeline stages. For each cycle,

the timing diagram indicates the pipeline stage in which each instructioh can be found.

Without brancl,_o, the pipeline fetches instructic:_.s sequentially from memory. In Figure 4, the

instructions to be executed are E -, F -* G -* H ---, I -* E -* it". However, the direction of

branch I is not known until cycle 7. By this time instructions J and K have already entered the

pipeline. Therefore, in cycle 8 instruction E enter° the pipeline while J and K are scratched. The

bubbles created by incorrectly fetching J and K reduce the throughput of the pipeline.

_Althongh the compare-and.br_nch instructions _re auumed in the example, the methods in this paper applies
to condition code branches mswell.

_Although unconditional branch instructions can redirect the instruction fetch at the the ID stage, we ignore the
optimization in this example for simplicity.

9

1990018032-011

IF ID EX WB

ALU and Register
Instruction ,'t I17_--_ Register __ branch

iUI] memory.. U I fetch I i iU L decision write _
:i... i

o ... D.. :

Next fetch I.D

address =

logic
:, ... a

Figure 3: A block diagram and a simplified view of a pipelined processor. FA, IR, OR, RR are
pipeline registers Fetch Address, Instruction Register, Operand Register, and Result Register.

IF ID EX WB
1 E
2 F E
3 G F E

4 H G F E
5 I H G F

6 J I H G
7 K J I 11

8 E I
9 F E

Figure 4: A timing diagram of the pipelined processor in Figure 3 executing the sequence of
instructions E -, F --* G --* H _ I --* E --* F of Figure 2. Instructions J and K are scratched
from the pipeline because I is taken.

10

1990018032-012

!
!
!

IF_ IF2 ID EX1 EX2 WB

I 2 12 11

3 I3 I2 I_

I 4 14 I3 12 I_5 Is I4 I3 I2 I,
6 Ie I1

!
Figure 5: A timing diagram of a pipelined processor which results from further dividing the IF

I and EX stages of the processor in Figure 3.

I 2.3 Deep Pipelining and Multiple Instruction Issue

The rate of instruction execution is equal to the clock frequency times the number of instructions

I
executed per clock cycle. One way to improve the instruction execution rate is to increase the clock

I frequency. The pipeline stages with the longest delay (critical paths) limit the clock frequency.

I Therefore, subdividing these stages can potentially increase the clock frequency and improve the
overall performance. This adds stages in the pipeline a_id creates a deeper pipeline. For example,

I iftheinstructioncacheaccessand theinstructionexecutionlimittheclockfrequency,subdividing

thesestagesmay improvetheclockfrequency.A timingdiagramoftheresultantpipelir.-isshown

I in Figure 5. Now four instructions axe scratched if a compaxe-and-branch redirects the instruction

I fetch. For example,/'2 - Is may be scratched if/1 redirects the instruction fetch.

Another method to impro-¢e instruction execution rate is to increase the number of instructions

I executed per cycle. This is done by fetching, decoding, and executing multiple instructions per cycle.

I This is often referred to as muhiple instruction issue[Tjad70] [Fost72][Kuck72][Nico84][Patt85][nwu88]

[Ples88][Smith89]. The timing diagram of such a pipeline is shown in Figure 6. In this example,

I two instructions are fetched per cycle. When a compare-and-branch (I1) reaches the EX stage,

!
1l

!

1990018032-013

I IF ID EX WB! I2,&

2 Ih,&
3 I6,h h,I3 I2,1x
4 Is,I, 14

Figure 6: A timing diagram of the pipelined processor which processes two instructions in parallel.

five (I2, !3, I4, Is, I6) instructions may be scratched from the pipeline. 3

As fax as instruction sequencing is concerned, multiple instruction issue has the same effect

as deep pipeling. They both result in increased number of instructions which may be scratched

when a branch redirects the instruction fetch. 4 Combining deep pipelining and multiple instruction

issue will increase the number of instructions to be scratched to a relatively large number. For

example, the TANDEM Cyclone processor requires 14 branch slots due to deep pipeline and multiple

instruction issue[Horsg0] s The d_scussions in this paper do not distinguish between deep pipelining

and m_dtiple instruction issue; taey are based on the number of instructions to be scratched by

branches.

2.4 High-Bandwidth Low-Cost Instruction Memory

Instruction caches have been adopted in many high performance processors. To support an exe-

cution rate of one in3tructiou per cycle, most of the instruction caches provide single cycle access.

aThe n_mber of inutructions to be scratched from the pipeline depends on the instruction alignment. If I2 rather
than It were a branch, four instructions (Is,/4, I_, Is) would be scratched.

4An issue which distinguishes multiple instruction issue from deep pipellning is that multiple likely corttrol transfer
instructions could be i_ued in one cycle. Handling multiple likely control transfer instructions per cycle in a multiple
instruction i,.sue processor is not difficult in Inline Target Insertion. The details are not within the scope of this
paper

_The processor currently employs an extension to the instruction cache which approximates the effect of a Branch
Target Buffer to cope with the branch problem.

12

1990018032-014

Instructioncacheswork wellwhen processorsaxeimplementedwithmaturetechnologywhichcan

accommodate largeon-chipcaches.They alsowork fairlywellwhen the main-streammemory

technologycan provideexternalsingle-cycleaccesscachesata reasonablecost.

Thereare,however,atleasttwosituationswherehigh-bandwidthlow-costinstructionmemories

(suchasVideoRAMs) [Nico88]may be preferredtoinstructioncaches.One isinapplicationswhich

requirehighlypredictableinstructionaccesstime(duetoreal-timerequirements),highinstruction

accessbandwidth(duetohighperformancerequirements),and low-costmemory system(toenable

laxgevolume production).Instructioncacheswith unpredictablecachemissescan not provide

predictableinstructionaccesstime. the costfora Video RAM basedinstructionmemory to

supportthesamesizeandbandwidthismuch lowerthanthatforan instructioncache.Forexample,

AdvAncedMicroDevicesrecommendsusingVideoRAMs for,.onstructinglow-costmemory systems

forthe AMD29000-based products.The othersituationiswhen an aggressivetechnology(e.g.

Ga_s) isusedtobuildextremelyhigh-performanceprocessorswithoutroom foron-chipcaches.In

thiscase,itmay be tooexpensivetobuildoff-chipcacheswhichprovidesinglecycleaccess.High-

bandwidthlow-costmemoriessuchasVideoRAMs, on theother__and,may havethecapabilityto

provideone instructioneverycycleata much lowerprice.

High-bandwidthlow-costmemoriescanbe treatedaspipelinedmemories.Ittakesseveralcycles

toperforman initialaccess.Once theinitialdataisavailable,one can performsinglecycleaccess

to itssequentiallocations.In the contextofinstructionfetch,thefirstinstructionaccesstakes

several(typicallythree)cyclesbut the subsequentsequentialaccessescompletein singlecycle.

Branchescauseperformanceproblemby disruptingthesequentialfetchpattern.Fetchingthe

targetinstructionofa takenbranchinvolvestheinitialaccessdelayingeneral.Forexample,there
w

isa BranchTargetCacheon AMD29000 toprovidethefirstthreesuccessorsofa takenbranchto

13

1990018032-015

cover the initial latency for accessing the target instructions- Since the first three successors are

suppfied by the Branch Target Cache, the external instruction memory are accessed starting with

the fourthsuccessorofthe branch.

In thispaper,we model high-bandwidthlow-costmemories with multiplepipelinestagesfor

instructionfetch.While thismodel may not be exactingeneral,due tosome boundary conditions,

compile-timecode restructuringtogetherwith hardware timing des;gncan make Video RAMs

behave exactly"ke a pipelinedmemory[Chang0]. As farasinstructionsequencingisconcerned,the

use ofhigh-bandwidthlow-costmemory increasesthe depth ofthe instructionsequer_cingpipeline.

Therefore,itincreasesthenumber ofrequiredbranch slots.The questioniswhether we can achieve

high performance with high-ba_udwidthlow-costinstructionmemories using clevercompile-time _.

code restructuringmethods.

3 Inline Target Insertion

This sectionaddressesthreebasictheoreticalissuesof InlineTarget Insertion:formalmodels of

implementation,proofofcorrectness,and returnfrom interrupt/exception.

3.1 Compiler Implementation

The compilerimplementation of InlineTarget Insertioninvolvescompile-timebranch prediction

and code restructuring.Branch predictionmarks each staticbranch as eitherlikelyor unlikely.

i'hepredictionisbased on the estimatedprobabilityforthe branch to redirectinstructionfetch

atthe run time.The probabilitycan be derivedfrom program analysisand/or executionprofiling.

The predictionisencoded inthe branch instructionsand passedon to the run-time hardware.

The predictedsuccessorsof an instructionI are the instructionswhich tend to executesubse-

14

1990018032-016

!
!
I quenttoI.The definitionofpredictedsuccessorsisslightlycomplicatedby thefrequentoccurrence

I ofbranches.LetT(I,k)refertothekthpredictedsuccessorofI. The predictedsuccessorsofan
instructioncan be definedrecursively:

!
i.IfI isa likelybranch,thenT(I,I)isthetargetinstructionofI. OtherwiseT(I,1)isthe

l nextsequentialinstructionofI.

I 2. (Iz = T(I, k)) A (I2 = T(I_, 1)) -- I2 = T(I, k + 1)

I For example, one can identify the first five predicted successors of F in Fill,re 2 as shown
below. Since F is a likely branch, its first predicted successor is its target instruction H. The

I second predicted successor of F is I, which is a likely branch itself. Thus the third predicted

I successor of F is I's target instruction E.

H = T(F,1)

I H=T(F, 1)AI=T(H, 1) --- I=T(F,2)

I I = T(F, 2) A E = T(I, 1) .--. E = T(F, 3)

E=T(F, 3) AF=T(E, 1) -- F=T(F,4)

I F=T(F,4) AH=T(i:',I) _ H=T(F, 5)

I The code restructing algorithm is shown below. It is also illustrated by Figure 7. The goal is to
ensure that all original instructions find their predicted successors in the next sequential locations.

I This is achieved by inserting the predicted successors of likely branches into their next sequential

I locations.

Algorithm ITI(N)

!
!

15

!

1990018032-017

1, Open N insertion slots after every likely branch s

2. Adjust the target label of the likely branches so that a likely branch / will branch

to T(I, N + 1) rather than T(I, 1) r

3. Copy the first N predicted successors of each likely branch into its slotss. If some

of the inserted instructions are branches, make sure they branch to the same target

after copying. 9

Note that we referred to the slots opened by the ITI Algorithm as insertion slots instead of

more tr_.',itional terms such as delay slots or squashing delay slots. The insertion slots are only

associated with likely branches. It is a compile-time concept. Only instructions in the insertion

slots can be duplicate copies. All the others are original. This is different from what the terms

delay slots and squashing delay slots usually mean. They often refer to sequential locations after

both likely and unlikely branches.

Figure 8 illustrates the application of ITI(N=2) to a part of the machine program in Figure 2.

Step 1 opens two insertion slots for the likely branches F and I. Step 2 adjusts the branch label

so that F branches to H + 2 and 1 branches to E + 2. Step 3 copies the predicted successors of F

(H and I) and I (E and F) into the insertion slots of F (H' and I') and I(E' and F'). Note that

the offset is adjusted so that I _ and F _ branches to the same target instructions as 1 and F. The

readers are encouraged to apply ITI(N=3) to the code for more insights into the algorithm.

sit is possible to extend the proofs to non-uniform number of slots in the same pipeline. The details are out side
the scope of this paper.

71n the discussions, all address arithmetics are in terms of instruction words. For example, address ,-.- address + 1
advances the address to the next instruction.

SThis step can be performed iteratively. In the first iteration, the first predicted successors of all likely branches are
determined and inserted. Each subsequent iteration inserts one more predicted successor for all the likely branches.
It takes N ;terations to insert all the target instructions to their assigned slots.

gThis is trivial if the code restructuring works on assembly code. In this case, the branch targets are specified as
labels. The assembler automatically generates the correct branch offset for the inserted branches.

16

1990018032-018

(a) Likely branch handling

C: br D]

t 1"dl ".
d2 ""

N insertion
D: dl _ target of C

slots d2
copy

dN :

alternative _ "-,,address , dN

"_"- adjusted target

of C

(b) unlikely branch handling

C: br D

no insertion

slots D: _ alternative
address

Figure 7: Handling branches in the ITI Algorithm.

17

1990018032-019

(a) (b)

likely G kely ste_ 1 .

l-I

I G

H

_ I

step2 = (c) step3 _- (d) step3 _ (e)

E iteration 1 E iteration 2 E

F "'-'_... F -...--- F

...,°'°°'% .. I'P

H1 H H
I I I -. "°% I

F'

........D. copy a predicted successor into a branch slot

Figure 8: A running example of Inline Target Insertion.

18

1990018032-020

!

I With Inline Target Inser_._,_, each instruction may be duplicated into multiple]ocations. There-

i fore, the same instruction may be fetched from one of the several locations. The original address,
Ao(I), of a dynamic instruction is the address of the original copy of I. The fetch address, A/(I), of

I a dyn&mic instruction I is the address from which [was fetched. In Figure 8, the original address

i of both I and F is the address of L The fetch addresses I and ir_ are their individual addresses.

i 3.2 Sequencing Pipeline Implementation

The sequencing pipeline is divided into N + 1 stages. The sequencing pipeline processes all instruc-

I tions in their fetch order. If any instruction is delayed due to a condition (e.g. instruction cache

I miss) in the sequencing pipeline, all the other instructions in the pipeline are delayed. This includes

the instructions ahead of the one being delayed. The net effect is that the entire sequencing pipeline

I freezes. This ensures that the relative pipeline timing among instructions is accurately exposed to

I the compiler. It guarantees that when a branch redirects instruction fetch, all instructions in its

insertion slots have entered the sequencing pipeline. Note that this restriction may applies to the

I instructions in the sequencing pipeline, the instructions in the execution pipelines (e.g., data mem-

I oryaccessand floatingpointevaluation)canstillproceed#hiJetheinstruction_equencingpipeline
freezes.

I The definition of time in instruction sequencing separates the freeze cycles from _xecution cycles.

I Freeze cycles do not affect the relative timing among instructicns in the sequencing pipeline. In

this paper, cycle t refers to the t th cycle of program execution excluding the freeze cycles. I(k, t) is

I defined as the dynam.i,- instruction at the k th stage of the sequencing pipeline during cycle t. The

I implementation kee_,_ _,n array of fetch addresses for all the instructions in the sequencing pipeline.

The fetch address for the instruction at stage i in cycle t will be referred to as Al([(i, t)).

I
19

I

1990018032-021

The fetch address generation function of the sequencing pipeline is shown below. The sequencing

pipeline fetches instructions sequentially by default. Each branch can redirect the instruction fetch

a_d/or scratch the subsequent instructions when it reaches the end of the sequencing pii eline.

If a branch redirects the instruction fetch, the next fetch address is the adjusted target address

determined in Algorithm ITI. If the decision of a branch is incorrectly predicted, it scratches all

the subsequent instructions from the sequencing pipeline.

Fetch Address Generation Function FAG(N)

Pipeline stage 1:

if (I(N + 1,t) = EMPTY} Al(I(1,t+ 1)) ,--- Af(I(1,t))+]

else if {I(N + 1,t) = REDIRECT} Al(I(1,t + 1)) _ adjusted target address of

i(lv+ 1,t))

elseAS(I(1,t + 1)).--A/(I(1,t))+ 1

Other stages:

for k = 1...Y Af(I(k + 1, t + 1)) ,---Af(I(k , t))

Figure 9(a) shows a timing diagram for executing the instruction sequence ... E _ F _ H ---*

I _ E ... of the machine program in Figure 8(a). With Inline Target Insertion (Figure 8(e)), the

instruction sequence becomes ... E ---, F ---*H t _ I' _ E' ... In this case, the branch decision

for F is predicted correctly at the compile time. When F reaches the EX stage in cycle 4_ no

instruction is scratched from the pipeline. Since F redirects the instruction fetch, the instruction

2O

1990018032-022

(a) IF ID EX WB (b) IF ID EX WB
1 E 1 E
2 F E 2 F E
3 H' F E 3 H I F E

4 I' H I F E 4 I' It' F E
' 5 E I I' H' F 5 G F

Figure 9: (a) Timing diagram of a pipelined processor executing the sequence ... E --* F
H' _ I _ -..*E' ... of instructions in Figure 8(e). (b) A similar timing diagram for the sequence ...
E_F---*G...

to be fetched by the IF stage in cycle 5 is E' (the adjusted target of F) rather than the next

sequential instruction G.

Figure 9(b) shows a similar timing diagram for executing the instruction sequence ... E _ F

G ... With Inline Target Insertion, the instruction fetch sequence becomes ... E --. [---, H _--. I _ ---,

G ... In this case, the branch _4ecision for F is predicted incorrectly at the compile time. When F

reaches the EX stage in cycle 4, instruction8 H t and I _ a:e scratched from the pipeline. Since F

does not redirect the instruction fetch, the instruction to be fetched by the IF stage in cycle 5 is

the next sequent.ial instruction G.

A very important rule is that whenever the sequencing pipeline is empty, first instruction is

aJways fetched from its original copy. The sequencing pipedne can be empty in three cases: program

startup, incorrect branch prediction, and return from interrupt/exception. It is easy to guarantee

that the program entrance address always be an original address. We will show in the next section

that the appropriate original address for a program to resume after incorrect branch prediction

and interrupt/exception handling is always conveniently available. These original addresses will be

used by the sequencing to resume program execution.

21

1990018032-023

!
|
!

N + 1 The number ofstagesintheinstructionsequencingpipeline

I(k, t) The dynamic instruction occupying the k th pipeline stage at cycle t IAy(I) The fetch address of dynamic instruction I
Ao(I) The original address of dynamic instruction I

T(I,k) The k th predicted successor of I IS(I, k) Thp kth correct successor of dynamic instruction I

Table 2: A summary of important definitions used in the proofs. I

3.3 Correctness of Implementation I

Branches are the central issue of Inline Target Insertion. Without branches, the sequencing I

pipeline would simply fetch instructions sequentially. The instructions emerging from the sequenc-

ing pipeline would be the correct sequence. Therefore, the correctness proofs of the compiler and I

pipeline implementation will focus on the correct execution of branches. We first show that brar.=hes I

are executed correctly with perfect branch pr¢ tiction. We *._.==finish the Droof by showing that

the execution of branches remains correct when they are incorrectly predicted. I

Correctly Predicted Branches I

The difficulties with proving the correctness of Inline Target Insertion are due to branches in I

insertion slots. For pipelines with many slots, it is highly probable to have branches inserted I

into insertion slots (see Section 4.2). In the case where there in no branch in insertion slots, the

correctness follow from the description of the ITI Algorithm. All br_nch instructions would be I

originals and they woul¢_have their first N predicted successors in the next N sequential locations. I

Whereas a branch instruction is an insertion slot can not have all its N predicted successors in

the next N sequential locations. For example, in Figure 8(e), questions arise regarding the correct I

!
22

!

1990018032-024

!
I execution of F'. When F ' redirects the instruction fetch, hGw do we know that the resulting

i instruction sequence is always eqa'valent to the correct sequence F --_ H --* I...?
Theorem 1 states that, without incorrectly predicted branches in the sequencing pipeline, the

I instructions in the sequencing pipeline axe always the correct successors of the instruction at the

end of the pipeline. Therefore, the sequence of instructions delivered by the sequencing pipeline is
correct when all branches are predicted correctly.

I Theorem 1 If none of {I(i,t),i = 1...N + 1} is an incorrectly predicted branch, then I(i,t) =

I S(I(N + 1,t),N - i+ 1),i= !...N.

Proof: The theorem can be proved by induction, initially, the sequencing pipeline is empty. The

I first instruction I fetched into the pipeline must be c_ original. According to the code restructuring

I algorithm, the nezt N sequential instructions are the first N predicted successors to I. Since there
is no instruction preceding I in the pipeline, the next N sequential instructions are fetched into the

I pipeline as I approach the end of the pipeline (see the Fetch Address Generation Function). Since

i there is no incorrect branch prediction, the first N predicted successors of I are also its first correct
successors. This proves the initial step of the induction.

I Assuming '_hat the theorem holds up to cycle t, we show that it also holds for cycle t + 1. That is,

I knowin§ l(i, t) = S(I(N+I, t), N-/+I), i = 1...N, we need to show I(i, t+l) = S(I(N+I, t+l), N-
i + 1),i = 1...N. From the Fetch Address Generation Function, I(i + 1,t + 1) = I(i,t),i = 1...N.

I This implies I(i,t+ 1) = S(I(N + 1,t + 1),N - i+ 1),i = 2...N. It remains to be shown that

i I(1,t-L1)=S(I(N+I,t+I),N).
If I(N + 1, t) is not a taken branch, then it can not be a likely branch according to th _.assumpti,m

I of correct branch prediction. Therefore, /(1, t) can not be fetched from the last insertion slot of a

branch. S(l(1, t),l) = S(I(2, t + 1),1) = S(I(N + 1,t + 1),N) must be I(1,t)'s next sequential

I
23

!

1990018032-025

instruction. AccoTffin9 to the Fetch Address Generation function, l_ l,t + 1) zs szmpiy the nezt

sequential instruction of 1(1, t) if I(N + 1, t) is not a taken branch. Therefore1(1, t = S(I(N +

1,t + 1),N) is true if I(N + 1,t) is not a taken branch.

lf I(N + 1,t) is a taken branch, I(i,t + 1) would be the adjusted target of I(N + 1,t). This

address of this adjusted target is N plus the original taryet address of I(1,t + 1). Note that an

original target instruction is always an original instruction. The ITI algorithm en_ures that the

first N predicted succe._sor of an original instruction are always found in the next N sequential

locations. Therefore, the adjusted target of I(N + 1, t) is the N t_"predicted successor of the original

target of I(N + 1, t). Meanu'hile, I (N + 1, t + 1) = I (N, t) is a copy of the original target instruction

ofI(N + 1, t). Therefore, I(1,t + 1) = S(I(N,t),N)= S(I(N+ 1,t+ 1),N). QED.

Fxgure 10 illustrates Theorem 1 with the execution of instructions in Figure 8(e). Assume that

correct instruction sequence should be equivalent to E _ F _ H _ I ---, E --* F in the original

prograa:: in Figure 8(a). The pipeline starts by fetching E into the empty pipeline. Note that

when F reaches the end of the pipeline in cycle 5, its correct successors H t and I t are already

in the pipeline due to inline target insertion. F redirects the instruction fetch to E _ which is the

adjusted target of F. With correct branch l_rediction, the instructions at the IF and ID stages

are always the correct successor of the one at the EX stage. Although instructions may be fetched

from duplicate copies rather than thei.r originals, the instructions deliwred to the WB stage is

equivalent to the correct sequence. The readers are encouraged to design an example involving the

execution of F _, a branch in a branch slot.

24

1990018032-026

7F ID EX WB

1 E
2 F E
3 H I F E

4 I I H: F E
5 E I 11 H' F
6 F' E I I I H'

Figure 1G: Timing diagram of a pipelined processor executing the sequence ... E -- F --. H' --
I' ---*E' ..-*U ... of instructiovs in Figure 8(e).

Incorrectly Predicted Branches

To execute an incorrectly predicted branch instruction correctly, the subsequent instructions in

the sequencing pipeline must be scratched. The alternative target instruction address must be

determined so that the instruction fetch can restart from that address. The results in this section

show that the alternative target address for both likely and unlikely branches are conveniently

available.

The case of unlikely branches is fairly straightforward. When the incorrectly predicted branch

reaches the end of the sequencing pipeline, the alternative target address is easily derived from

its fetch address (maintained by tile hardware) and its target specification (e.g. target offset).

Note that this address is always an original address (see the ITI Algorithm). Since the N pre-

dicted successors of an instruction always follow its original copy in memory, the pipeline correctly

restarts fetching instruction from this address. Thus the alternative target address of all incorrectly

predicted unlikely branch is conveniently available for restarting the instruction fetch

The case of likely branches is not nearly as obvious. The general problem is illustrated in

Figure 11. The alternative address of a likely branch I1 is implicitly specified as N plus its original

25

1990018032-027

Io br I1

l 11' br I-. '_.... ll br 12
c..op.y

iV insertion l

slots N insertion

slot-

r
alternative address of/1

Figure 11: The problem of implicit alternative address for likely branches in insertion slots.

address. However, if the iil:a!y branch is copied into a branch slot, this implicit information is not

copied with it. For example, if a dynamic instruction fetched from F _in Figure 8(e) is not taken,

it must produce an instruction sequence equivalent to F _ G _ H To guarantee this, the

_,ddress of G must be available when F _reaches the end of the sequencing pipeline. However, siI,ce

F' does not carry any information about G being its alternativ,: target instruction, it is not clear

J if the address of G will be available at that time. Fortunately, this is formally guaranteed by the

Corollary to Theorem 2, whose proof is divided into Lemma 1 and Lemma 2.

Lemma 1 states that if a dynamic instruction I(N + 1, t) is fetched from its original copy, its

original a_.dress is conveniently available in the fcrm of A/(I(1, t))- N.

Lemma 1 If the I (N + l, t) is fetched from its original copy, then A l(I (1, t)) = N + Ao(I (N + I, _)).

Proof: Since I(N + 1, t) = I(1, t - _-r)and I (N + 1, t) is fetched from its original copy, A /(I (1, t -

N)) = Ao(I(N + 1,t)). Because an original instruction can never reside in any branch slot,

none of {I(N + 1,t - N),I(N + 1, t - N + 1),...I(N + 1,t - 1)} can be likely branches. There

could be unlikely branches amon 9 these last N instructione. However, unlikely branches do not

26

1990018032-028

redirect instruction fetch unless they ere mcorrectiy predicted. Any such incorrect p 6iciion musi

be detected before I(N + 1, t) reaches the end of the pipeline. In this case, I(N + 1, t) would have

been scratched from the pipeline before t. Therefore, none of the previous N instructions can be

taken branches. The sequence pipeline fetches instructions sequentially between t - n and t. This

implies AI(I(1,t)) = N + A/(I(1,t - N)) = N + Ao(I(N + 1,t)). QED.

Lemma 2 states that if a dynamic instruction I(N + 1, t) is fetched from a duplicate copy,

its original address is also conveniently available in the form of A1(I(1,t)) - N. Note that each

duplicate copy of a branch resides in a branch slot of an original likely branch. Thus we prove

Lemma 2 by showing that for any arbitrary original likely branch B in the program, the Lemma

holds for all the dynamic instructions fetched from its insertion slots. Since B is an arbitrary original

branch instruction, this proves the Lemma for all dynamic instructions fetched from insertion slots.

Lemma _ If I(N + 1,t) is fetched from a duplicate copy, then Ay(I(1,t)) = N + Ao(I(N + 1,t)).

Proof: By induction. To prove the initial step of the induction, we prove that the Lemma is

true for an dynamic instruction fetched from the first slot of an arbitrary original branch B. This

slot contains a copy of T(B, 1) is the first target instruction of B. If I(N + 1, t) = T(B, 1), then

I(N + 1, t- 1) = B and I(N, t - 1) = T(B !) Since T(B, 1) is the first target instruction of B, the

adjusted ta,_et address4 B is N _ Ao(T(B, 1)). As a result, Af(I(1, t) = adjusted large address

of B = N + Ao(T(B, 1)) = N + Ao(I(N, t - 1)) = N + ao(I(N + 1, t)). This proves the initial .step.

Assuming the Lemma Lolds for the T(B, k), we show that the lemma also itolds for T(B, k + 1).

IfT(B, k) is a likely branch, the original ofT(B, k+ 1) must be its first target instruction. If I(N +

1, t) = T(B,k+ I), thenl(N + l,t-1) = T(B,k) and I(N,t-1) = T(B,k+ I). Since T(B,k + l) is

the first target instruction ofT(B, k), adjusted target address ofT(B, k) is N + Ao(T(B, k+l)). As a

27

1990018032-029

result, AI(I(1, t) = adjusted targe address ofT(B, k) = N + Ao(T(B, k+ 1)) = N + Ao(1(2¢, t- 1)) =

N + Ao(l(h- I- 1,t)). This proves the induction step for the case where T(B, k) is a likely branch.

If T(B, k) is not a likely branch, the original ofT(B, k + 1) follows immediately the original of

T(B,k). That is, Ao(T(B,k + 1)) is equal to 1 + Ao(T(B,k)). Also, T(B,k) cannot be a taken

branch. According to the induction assumption, if I(N + 1,t- 1) = T(B,k), A/(l(1, t- 1)) =

N + Ao(T(B, k)). Thus AI(I(1 , t)) = 1+ AI(I(!, t - 1) = 1+ N + Ao(T(B, k)) = N + Ao(T(B, k +

1)) = N + Ao(I(N + 1, t). This proves the induction step .[or the case where T(A, k) is not a likely

branch. QED.

Theorem 2 Af(I(1,t)) = N + Ao(I(N + 1,t)).

Plvof: Theorem 2 follows from the proofs 9f Lemma I and Lemma 2. QED.

Theorem 2 is perhaps the most critical result in proving the correctness of Inline Target In-

sertion. It assures that when an instruction reaches the end of the sequencing pipeline, N plus

its original address is always available at no cost. There are two major applications for this re-

sult: recovery from incorrect branch prediction and return from interrupt/exception. The former

is presented in this section and the latter will be the topic of the next section.

Corollary 1 states that the execution of an incorrectly predicted branch is very simple. When an

incorrectly predicted likely branch reaches the end of the sequencing pipeline, it simply allows the

pipeline to fetch the next sequential instruction (in addition to scratching all subsequent instructions

in the sequencing pipelineS.

Corollary 1 The altemm$ive address of a likely branch I(N + 1, t) is 1 + A/(I(1, t)).

Proof: The ITI(N) Algorithm opens N insertion slots after each likely branch. Therefore, the

alternative target address ("]'all through") of a likely branch I is always I + N + Ao(I). According the

28

1990018032-030

!
!
!

IF ID EX WB

2 F E
3 H' F E

I 4 I' H' F E5 G F

6 H G

!
Figure 12: Timing diagram of a pipelined processor crecuting the sequence E -* F _ G _ H of

I instructions in Figure 8(e).

I Theorem 2, when the branch is I(N + 1, t), then it._alte.,'nal_ve address is 1+ N + Ao(I(N + 1, t)) =

1 + At(I(1, t). Note that is always t_ address of an original instruction (see Figure 7). The proof

I of Theorem i shows that the sequencing pipeline re' 'art., "orrectly from the alternative address.

t QED.

i Figure 12 shows the execution of instruction sequenc- _ --* F _ G _ H of Figure 8(e). When F
reaches the EX stage, the hardware detects that it was incorrectly predicted. The _wo instr_=ctions

I in the sequencing pipeline (H _and I t) will be scratched. The next sequential instruction of I t is G,

i which is exactly the alternative target instruction of F. This example is relatively simp:e because
F was fetched from its original copy. The readers are encouraged to verify for themselves that the

I instruction sequence I _ E' --* F t --, G --* H will be executed correctly. Note that F' is now

fetched from a duplicate copy, which makes the situation slightly more complicated.!
To summarize, we have shown the correctness of Inline Target Insertion in two steps. In the first

[.

I step, we the branches are executed correctly if they are predicted correctly (Theorem 1).
show that

In the second step, we show that both likely and unlikely branches are executed correctly (second
paragraph of this section and Corollary 1). It is also _lear from the proofs that the hardware

!
29

!

1990018032-031

requirement for the execution is very small. The requarements are an array of _ _....... c _,1l_ b_LIL UA cL_ct.UU l _D,_t::_

instructions in the sequencing pipeline 1°, an adder to derive the target address of a taken branch,

and a mechanism to scratch instructions fetched due to an incorrectly predicted branch.

3.4 Interrupt/Exception Return

The problem of interrupt/exception return[Smith85][Hwu87] arises when interrupts und exceptio_s

occur to instructions in insertion slots. For example, assume that the execution of code in Fig-

ure 8(e) involves an instruction sequence, E --* F --. H _ --. I _ --. E t _ F _. Branch F is correctly

predicted to be taken. The question is, if H' caused a page fault, how much instruction sequencing

information must be saved so that the process can resume properly after the page fault is handled?

H one saved only the address of H _, the information about F being taken is lost. Since H _ ;s a

not a branch, the hardware would assume that 11 was to be executed after H I. Since I t is a likely

branch and is taken, the hardware would incorrectly assume that G and H resided in the insertion

slots of I _. The instruction execution sequence would become H _ ---. I _ --. G ---* H --* ..., which is

incorrect.

The problem is that resuming execution from H _ violated the restriction that an empty se-

quencing pipeline always starts fetching from an original instruction. The hardware does not have

the information that H _ was in the first branch slot of F and that F was taken before the page

fault occurred. Because interrupts and exceptions can occur to instructions in all inserti,-- slots

of a branch and there can be many likely branches in the slots, the problem can not be solve_, by

simply remembering the branch decision for one previous branch.

A porular solution to this problem is to save all the previous N fetch addresses plus the fetch

°It ha also been shown that with a modification to the semantics of branch instructions, one can eliminate the
array of fetch addresses as well.[Cha_89a]

3O

1990018032-032

!
!
i address of the re-entry instruction. During exception return, all the N + 1 ietch addresses will be

used to reload their corresponding instructions to restore the instruction sequencing state to before

I the exception. The disadvantage of tl-ls solution is that it increases the number of states in the

I pipeline control logic and can therefore slow down the circuit. The problem becomes more severe

for pipdines with a large number of slots. Theorem 3 shows that exception and interrupt return

I
can be as simple as loading the empt) -11 instruction sequencing pipeline with only one fetch address

I which is readily available upon detection of an interrupt/exception, m

I Theorem 3 Interrupt/exception return to an instruction is correctly performed by loading the

original address of the instruction to the fetch address of the first staoe of an empty instruction

I sequencing pipeline.

I Proof: Ao(I(N + 1, t)) is always available in the fo.,'m of At(ll t) - N (Theorem 2). One can ,.
record the original addresses when delivering an instruction,, to the execution units. This guarantees

I that the original address of all instructions active in the execution units be available. Therefore,

i when an interrupt/exception occurs to an instruction, the processor can save the original address
of that instruction as the return address. During exception return, the empty sequencing pipeline

I simply fetches instructions sequentially starting at the return address. Since the first instruction is

i an original instruction, all !he first N predicted successors located in the next sequential locations.
According to the proof of Theorem I, the sequencing pipeline produces an instruction sequence

I equivalent to that without interrupt/exception. QED.

I Figure 13 illustrates the equivalence between the sequence with and without exception to an

instruction in a branch slot. Figure 13 shows the timing of a correct instruction sequence E

I liThe pipeline could still contain instructions from the interrupt/exception handier or from other processes. As far
as the resuming process is concerned, the pipeline does not contain may instruction and/or sequencing information
from the same process.

I
31

I

1990018032-033

|
I

(b) IF ID EX WB
1 E

(a) IF ID EX WB 2 F E
1 E 3 FIr F E

' 2 F E 4 I' ll I F E
3 FII F E 5 E I I I I11 F u
4 11 It I F E ...
5 E I I' III F 1' It

2' I H
3' E t I H

I

Figure 13: Timing diagram of a pipelined processor executing the sequence E --* F _ H' _ F _ E'

of instructions in Figure 8(e).

F --, FI' --_ I' --* E' _ F' from Figure 13 without exception. Figure 13 shows the timing with an I _-

exception to FI'. When FI' reaches the end of the sequencing pipeline (EX stage) at t, its Ao(FI')

is availhle in the form cf Al(I(1,t) = E _) - 2. This address will be maintained by the hardware I

until FI' finishes execution 12. When an exception is detected, Ao(H') is saved as the return address. I

During exception return, the sequencing pipeline resumes instruction fetch from FI, the original

copy of H t. Note that the instruction sequence produced is H --* I --. E', which is equivalent to I

_J the one without exception. I
An observation is that the original copies must be preserved to guarantee clean implementation

of interrupt/exception return. In Figure 8(e), if normal control transfers always enter the section I

, at E _, there is an opportunity to remove E and F after Inline Target Insertion to reduce code size. I
However, this would prevent clean interrupt/exception return if one occurs to E' or F_. Section 4.2

presents a superior alternative alr)roach to reducing code expansion. I

1_The realoriginaladdressdoes not have tobe calculateduntilan exceptionisdetected.One can simplysave IAl(l(l,t)and only calculateAo(I(N + l,t)when an exceptionactuallyoccurs.This avoidsrequiringan extra
subtractorinthesequencingpipeline.

I
32

I

1990018032-034

3.5 Extension to Out-of-order Execution

Inline Target Insertion can be extended to handle instruction sequencing for out-of-order execu-

tion machines [Woma67] [Weis84] [Acos86] [Hwu87] [Hwu88] [Smith89] . The major instruction

sequencing problem for out-of-order execution machines is the indeterminate uming of deriving

branching conditions and target addresses. It is not feasible in general to design an efficient se-

quencing pipeline where branches always have their conditions and target addresses at the end of

the sequendr.& pipeline. To allow efficient out-of-order execution, the sequencL_g pipeline must

allow the subsequent instructions to proceed whenever possible.

To make Inline Target Insertion and its correctness proofs applicable to out-of-order execution

machines, the following changes should be made to _he pipeline implementation.

1. The sequencing pipeline is designed to be long enough to identify the target addresses for

program-counter-relative branches and for those whose target addresses can be derived with-

ou interlocking.

2. When a branch reaches the end of the sequencing pipeline, the followimg conditions may

Occur:

(a) The branch is a iikely one and its target address is not available yet. In this case, the

sequencing pipeline freezes until the interlock is resolved.

(b) The branch is an unlikely one and its target address is not yet avaiiable. In this case, the

sequencing pipeline proceeds with the subsequent instructions. Extra hardware must be

added to secure the target address when it becomes available to recover from incorrect

branch prediction. The execution pipeline must also be able to cancel the effects of the

subsequent instructions emerging from the sequencing pipeline for the same reason.

33

1990018032-035

(c) The branch condition is not yet available. In this case, the sequencing pipeline proceeds

with the subsequent instructions. Extra hardware must be added to secure the alterna-

tive address to recover horn incorrect branch prediction. The execution pipeline must

be able to cancel the effects of the subsequent instrnctions emerging from the sequencing

pipeline for the same reason.

If a branch is program counter relative, both the predicted and alternative addresses are available

at the end of the sequencing pipeline. The only difference from the original sequencing pipline

model is that the condition might he derived later. Since the hardware secure_ ___._a_ernative

address, the sequenc!ng state can be properly recovered from incorrectly predicted branches. If the

branch target address is derived from run-time data, the target address of a likely branch may be

unavailable at the end of the sequencing pipeline. Freezing the sequencing pipeline in the above

specification ensures that all theorems hold for this case. As for unlikely branches, the target

address is the alternative address. The sequencing pipeline can proceed _ long as the alternative

address is secured when it becomes available. Therefore, all the proofs in this paper remain true

for out-oborder execution machines.

4 Experimentation

The code expansion cost and instruction sequencing efficiency of Inline Target Insertion can only

be evaluated empirically. This section reports experimental results based on a set of production

quality software from UNIX t3 and CAD domains. The purpose is to show that Inline Target

Insertion is an effective method for achieving high instruction sequencing efficiency for pipelined

_3UNIXis a trademark of AT&T.

34

1990018032-036

|
!
I processors. All the experiments are based on the an instruction set architecture which closely

i resembles MIPS R2000/3000[Kane87] with modifications to accommodate Inline Target Insertion.
The IMPACT-I C Compiler, an optimizing C compiler developed for deeping pipelining and multiple

I instruction issue at the University of minois, is used to generate code for all the experiments

i [Chan88][Hwu89b][Chan89bl[Chan89c].

I 4.1 The Benchmark

Table 3 presents the benchmarks chosen for this experiment. The C li,_es column describes the

I size of the benchmark programs in number of lines of C code (not counting comments). The runs

I column shows the number of inputs used to generate the profile databases and the performance

measurement. The input description column briefly describes the nature of the inputs for the

I benchmarks. The inputs are realistic and representative of typical uses of the benchmarks. For

I example, the grammars for a C compiler and for a LISP interpreter are two of ten realistic inputs

for bison and yacc. Twenty files of several production quality C programs, ranging from 100 to

I 3n00 lines, are inputs to the cccp program. All t e twenty original benchmark inputs form the input

I to espresso. The exp._rimental results will be reported based on the average and sample deviation
of all program and input combinations shown in Table 1. The use of many different real inputs to

I each program is intended to verify the stability of Inline Target Insertion using profile information.

I The IMPACT-I compiler automatically applies trace selection and placement, and have removed
unnecessary unconditional branches via code restructuring [Chan88][Cban_9b].

!
!
!

35

!

1990018032-037

name C lines runs input description

bison 6913 10 grammar for a C compiler, etc

cccp 4660 20 C programs (.100-3000 lines)

crop 371 16 similar/dissimilar text files
compress 1941 20 same as cccp

eqn 4167 20 paperswith.EQ options
espresso 11545 20 original benchmarks [Rude85]

grep 1302 20 exercised various options
lex 3251 4 lexers for C, Lisp, awk, and pic

make 7043 20 makefiles for cccp, compress, etc

tar 3186 14 save/extract files
tbl 4497 20 paperswith.TSoptioils

tee 1063 18 textfiles(100-3000lines)
wc 345 20 same ascccp

yacc 3333 10 grammar fora C compiler,etc

Table3:Benchmarks.

4.2 Code Expansion

The problemofcodeexpansionhas todo withthefrequentoccurrenceof branchesin programs.

Insertingtargetinstructionsfora branchaddsN instructionstothestaticprogramTM In Figure8,

targetinsertionforF and irincreasesthesizeoftheloopfrom5 to11instructions,htgeneral,ifQ

istheprobabilityforstaticinstructionstobelikelybranches(Q = 18% among allthebenchmarks),

Inline Target Insertion can potentially :ncrease the c_de size by N • Q (180% for Q = 18% and

N = 10). Because large code expansion can significantly reduce the efficiency of hierarchical

memory systems, the problem of code expansion must be addressed for pipelines with a large

number of slots.

Table 4 shows the static control transfer characteristics of the benchmarks. The static cond.

(static uncond.) column gives the percentage of conditional (unconditional) branches among all

14One may argue that the originals of the inserted instructions may be deleted to save space if the flow of control

allows. We have shown, however, preserving the originals is crucial to the clean return from exceptions in insertion

slots (see Section 3.4).

36
T

1990018032-038

I
I

I static static dynamic dynamic
benchmark cond. uncond, cond. uncond,

I bison 0.12 0,17 0.19 0.01
cccp 0.10 0.1! 0.17 0.04

I crop 0.09 0.15 0.16 0.04compress 0.09 0.14 0.11 0.01
eqn 0.08 0.12 0.21 0.02

i espresso (].09 0.12 0.13 0.02grep 0.15 0.19 0.30 0.05
lex 0,15 0.16 0.30 0.01

I make 0,12 0.14 0 1_ 0.01tax 0.10 0.17 0.12 0.00
tbl 0.18 0.20 0.21 0.05

I ..tee 0.09 0.15 0.29 0.07wc 0.07 0.10 0.22 0.02

yacc 0.14 0.15 0.23 0.01

I Table 4: Static and dynamic characteristics. The high percentage of static unconditional branches
is due to the code layout optimization in IMPACT-I CC to reduce the number of likely branches.
Note that very few static unconditional branch are executed frequently. This optimization improves

I efficiency of both Inline Target Insertion and Branch Target Buffers[Hwu89a].
the

I the static instructions in the programs. The numbers presented in Table 4 confirms that branches

i appear frequently _nstatic programs. This ,_upports the importance of being able to insert branches I_
in the insertion slots (see Section 3.3). The high percentage of branches suggests that code expansion

I must be carefully controlled for these benchmarks.

i A simple solution is to reduce the number of Likely branches in static programs us!ng a threshold
method. A conditional branch that executes fewer number of times than a threshold wlue is

I automatically converted into an unlikely branch. An unconditional branch instr_ tion that executes m

i a fewer nur,lber of times than a threshold value can also be converted into an unlikely branch whose
branch condition is always satisfied. The method reduces the number of likely branches at the

I cost of some performance degradation. A similar idea has been Implemented in the IBM S_con,_

Generation RISC Architecture[Bako89].I
37

I
I

1990018032-039

,,,_c, if +;'_'_ v.re '_',_ 1;l_,;y h_,_h,_ 4 __ndB in thp program. A is executed 100 times

and it redirects the instruction fetch 95 times. B is executed 5 times and it redirects the instruction

fetch 4 times. Marking A and B to be likely branches achieves correct branch p-_-aiction 99 (95+4)

times out of a total of 105 (100+5). The code size increases by 2 * N. Since B is not executed

nearly as frequently as A, one can mark B as an unlikely branch. In this case, the accuracy of

branch prediction is reduced to be 96 (95+1) times out of 105. The code size only incre_ses by

N. Therefore, a large saving in code expansion could be achieved at _he cost of a small loss in

performance.

The idea is that all static likely branehe_ cause the same amount of code expansion but their

execution frequency may vary w;dely. Therefore, by carefully reversing the predirtion for the

infrequently executed likely brahches reduces code expansion at the cost of slight loss of prediction

accuracy. This is confirmed by results shown in Table 5. The threshold column specifies the

minimum dynamic execution count per run, below which, likely branches are converted to unlikely

branches. Yhe E[Q] column lists the average percentage of likely branches among all instructions

and the SD[Q] column indicates the sample deviations. The code expansion for a pipeline with

N slots is N • E[Q]. For example, for (AT - 2) with a threshold value of 100, one can expect a

2.2% increase in the static code size. Without code expansion control (threshold=0), the static

code size increase would be 36.2% for the same sequencing pipeline. For another example, for a

11-stage sequencing pipeline (N = 10) with a threshold value of 100, one can expect about 11%

increase in the static code size. Without code expa,_,on control (_hreshold--0), the static code

size increase wobld be 181% for the same sequencing pipeline. Note that the results are based

on control intensive programs. The code expansion cost should be much lower for programs with

simple control structures such as scientific applications.

38

1990018032-040

I
#

|
|

0 18.1% 3.7%

I 1 4.8% 2.1%
10 2.1% 1.6%

I 20 1.8% 1.5%
40 1.5% 1.3%

60 1.3% 1.2%

i 80 1.2% 1.1%I()0 1.1% 1.0%

200 0.9% 0.8%

I 400 0.6% 0.6%600 0.5% 0.5%

Table 5: Percentageof likelybranches among allstaticinstructions.Unconditionalbranchesare

I treate_l branches in this table.
likely

I 4.3 Instruction Sequencing Efficiency

i The problem of instruction sequencing efficiency is concerned with the total number of dynamic

instructions scratched from the pipeline due to all dynamic braaches. Since all insertion slots are

i inserted with predicted successors, the cost of instruction sequencing is a function of only N and the

I branch prcdiction accuracy. The key i_sue is whether compile-time branch prediction can provide

such a high prediction accuracy that the instruction sequencing efficiency remains high for large N

I values.

I Evaluating the instruction sequencing efficiency with Inline Target Insertion is straighforward.

One can profile the program to find the frequency for the dynamic instances of each branch to go in

I one of the possible directions. Once a branch is predicted to go in one di_'ection, the frequency for

I the branch to go in other directions contributes to the frequency of incorrect prediction. Note that

only the correct dynamic instructions reaches the end of the sequencing pipeline where branches

I are executed. Therefore, the frequency of executing incorrectly predicted branches is not affected

I
39

I

1990018032-041

(a) (b)

E E /

F 100 _ ITI [F zl

99% G 80% _ _ H'

H I' Z4

I 100 G

I .
I z3

zl + z2 = 100 _ E'
z3 + z4 = 100 L___ F' x2

Figure 14: Evaluating the efficiency of instruction sequencing.

by Inline Target Insertion.

In Figure 14(a), the execution frequencies of E and F axe both 100. E and F redirect the

instruction fetch 99 and 80 times respectively. By marking E and F as likely branches, we predict

them correctly for 179 times out of 200. That is, 21 dynamic branches will be incorrectly predicted.

Since each incorrectly predicted dynamic branch creates N bubbles in the sequencing pipeline,

we know that the instruction frequencmg cost is 21*N. Note that this number is not changed

by Inline Target Insertion. Figure 14(b) shows the code generated by INI(2). Although we do

not know exactly how many times F and F t were executed respectively, we know that their total

execution count is 100. We also know that the total number of incorrect predictions for F and F'

is 20. Therefore, the instruction sequencing cost of Figure 14(b) can be derived from the count of

incorrect prediction in Figure 14(a) multiplied by N.

Let P denote the probability that any dynamic instruction is incorrectly predicted. Note

chat this probability is calculated for all d:y,lamic instructions, including both branches and non-

40

1990018032-042

I
!

bre_ches. The ._.-erage in._trlwtion sequencing cost can be estimated by the following equation:

I relative sequencing co_t per instruction = 1 + P • N (1)

I If the peak sequencing rate is 1/K cycles per instructica, the actual rate would be (1 + P • N)/K

cycles per instruction 15.

I Table 4 highlights the dynamic branch behavior of the benchmarks. The dynamic cond. (dy-

I namic uncond.) column gives the percentage of conditional (unconditional) branches among all

the dynamic instructions in the measurement. The dynamic percentages of branches confirm that

I branch handling is critical to the performance o_rocessors with large number of branch slots. For

I example, 20% of the dynamic instructions of bison are branches. The P value for this program is

the branch prediction miss ratio times 20%. Assume that a the peak sequencing rate of a sequenc-

I ing pipeline is one cycle per instruction (K = 1) and it requires thre_ slots (N = 3) The required

I prediction accuracy to achieve a sequencing rate of 1.1 cycles per instruction can be calculated as
follows:

I 1.1 >= 1 + (1 - accuracy) • 9.2 • 3 (2)

I The prediction accuracy must be at least 83.3%.

i Table 6 provides the P values for a spectrum of threshholds averaged over all benchmarks. The
SD[P] column lists the sample deviations of P Increasing the threshhold effectively converts more

I branches into unlikely branches.

With N = 2, the relative sequencing cost per instruction is 1.036 per instruction for threshhold

I equals zero (no optimization). For a sequencing pipeline whose peak sequencing rate is one instruc-

I lSThis formula provides a measure of the efficiency of instruction sequencing. It does not take external events such
asinstructionmissesintoaccount.Sincesuchexternaleventsfreezethesequencingpipeline,one can simplyadd the
extrafreezecyclesintotheformulatoderivetheactualinstructionfetchrate.

I
41

I

1990018032-043

threshold E[P] SD[P]
0 0.018 0.010

1 0.018 0.010

i0 0.019 0.010
20 0.019 0.010

40 0.020 0.010

60 0.020 0.010
80 0.020 0.010

i00 0.020 O.OlO
200 0.023 0.010

400 0.023 0.0!0

600 0.025 0.011

Table 6: Probab_ty 3f prediction missamongalldynamic instructions.

tion per cycle, this means a sust,uned rate of 1.036 cycles per instruction. For a sequencing pipeline

which sequences k instructions per cycle, this translates into 1.036/k (.518 for k = 2) cycles per

instruction. When the threshhold is set to 100, the relative sequencing cost per instruction is 1.04.

With N = 10, the relative sequencing cost per instruction is 1.18 for threshhold equals zero (no

optimization). When the threshhold is set to 100, the sequencing cost per instruction instruction

becomes 1.20. Comparing Table 5 and Table 6, it is obvious that converting infrequently executed

branches into unlikely branches reduces the code expansion at little cost of instruction sequencing

efficiency.

5 Conclusion

We have defined Inline Target InserUon, a cost-effective instruction sequencing method extended

from the work of McFarling and Hennessy. The compiler and pipeline implementation offers two

important features. First, branches can be freely inserted into branch slots. The instruction

sequencing efficlp,_y is limited solely by the accuracy of compile-time branch prediction. Second,

42

1990018032-044

the execution can l_tuiit r___ _t"i iAt_LAttl.,_,u_ I _.,A_.,..k,o,,.,,t _,., " r--o,tiutu. "-, ,:_./ *:^" *" _ program ,,,;,h ,_,_o¢ ngl,_ nrn_r_m

counter. There is no n_d to reload other sequencing pipeline state information. These two features

make Inline Target Insertion a superior alternative (better performance and less software/hardware

complexity) to the conventional delayed branching mechanisms.

hdine Target Insertion has been implemented in the IMPACT-I C Compiler to verify the com-

piler implementation complexity. The software implementation is simple and straightforward. The

IMPACT-I C Compiler is used in experiments reported in this paper. A code expansion control

method is also proposed and included in the IMPACT-I C Compiler implementation. The code

expansion _d instruction sequencing efficiency of Inline Target Insertion have been measured for

UNIX and CAD programs. The experiments involve the execution of more than a billion MIPS-like

instructions. The size of programs, variety of programs, and variety of inputs to each prograha are

significantly larger than those used in the previous experiments. The stability of code restructuring

based on profile information is proved empirically using diverse inputs to each benchmark program.

The overall compile-time branch prediction accuracy is 92%. For a pipeline which requires

10 branch slots and fetches two instructions per cycle, this translates into an effective instruction

fetch rate of 0.6 cycles per instruction(see Section 4.3). In order to achieve the performance level

repozted in this paper, the instruction format must give the compiler complete freedom to predict

the direction of each static branch. While this can be easily achieved in a new instruction set

architecture, it could also be incorporated into an existing architecture as an upward compatible

feature.

It is straightforward to compare the performance of Inline Target Insertion and that of Branch

Target Buffers. For the same pipeline, the performance of both are determined by the branch

prediction accuracy. Hwu, Conte and Chang[Hwu89a] performed a direct comparisov between Inline

43

1990018032-045

Target Insertion and Branch Target Buffers ba_ed on a similar set of benchmarks. The conclusion

was that, without context switches, Branch Target Buffexs achieved an instruction sequencing

efficiency slightly lower than Inline Target Insertion. Context switches could significantly enlarge

the differeiLce[Lee84]. All in all, Branch Target Buffers have the advantages of binary compati_,;lity

with existing architectures and no code expansion. Inline Target Insertion has the advantage of

not requiring extra hardware buffers, better performance, and performance insensitive to context

switching.

The results in thi.q paper do not suggest that Inline Target Insertion is always superior to

Branch Target Buffering. But rather, the contribution is to show that Inline Target Insertion is a

cost-effective alternative to Branch Target Buffer. The performance is not a major concern. Both

achieve very good performance for deep pipellning and multiule instruction issue. Both enable

effective use of high bandwidth low cost instruction memories. The compiler complexity of Inline

Target Insertion is simple enough not to be a major concern either. This has been proved in the

IMPACT-I C Compiler implementation. If the cost of fast hardware buffers and context switching

are not major concerns but binary code compatibility and code size are, then Branch Target Buffer

should be used. Otherwise, Inline Target Insertion should be employed for its better performance

characteristics _nd lower hardware cost.

Acknowledgements

The authors would like to _hank Michael Loui, Nancy Warter, Sadun Anik, Thomas Conte, and

all members of the IMPACT research group for their support, comments and suggestions. This
research has been supported by the National Science Foundation (NSF) under Grant MIP-8809478,

a donation from l_CR., the National Aeronautics and Space Administration (NASA) under Contract
NASA NAG 1-613 in _operation with the Illinois Computer laboratory for Aerospace Systems and
Software (ICLASS), and the Office of Naval Research under Contract N00014-88-K-0656.

44

1990018032-046

!
!
|

tteIerences

[Acos86] R.D. Acosta,J.Kjelstrup,and H. C. Torng,"An InstructionIssuingApproachto

I PerformanceinMultipleFunctionalUnitProcessors",IEEE Transactions
Enhancing
on Computers,vol.C-35,no.9,pp.815-828,September,1986.

I [Amd] AdvancedMicroDevices,"Am29000 StreamlinedInstructionProcessor,AdvanceIn-formation,"PublicationNo. 09075,Rev.A, Sunnyvale,California.

i [Bako89] Bakoglu et al, "IBM Second-Generation tLISC Machine Organization," Proc. ICCD,pp.138-142, 1989. ---

[Birn86] J.S. Birnbaum and W. S. Worley, "Beyond RISC: High Precision Architecture",

I Spring COMPCON, 1986.
[Chan88] P.P. Chang and W. W. Hwu, "Trace Selection for Compiling Large C Application

I ProgramstoMicrocode",Proceedingsofthe21stAnnualWorkshopon Microprogram-ruingand Microarchitectures,pp.21-29,San Diego,California,November,1988.

[Chan89a] P.P. Chang and W. W. Hwu, "ForwardSemantic:A Compiler-AssistedInstruction

I FetchMethod ForHeavilyPipellnedP_ocessors',Proceedingsofthe22nd AnnualIn-
ternationalWorkshcpon Microprogrammingand Microarchitecture,Dublin,Ireland,

August,1989.

[Chan89b] P.P. Chang and W. W. Hwu, "Control Flow Optimization for Supercomputer Scalar
Processing," Proceedings of the 1989 International Confe,'ence on Supercomputing,

l Crete,Greece,June 5-9,1989.
[Chan89c] P.Chang,MS Thesis,"AggressiveCode ImprovingTechniquesBasedon ControlFlow

Analysis,"DepartmentofElectricaland ComputerEngineering,AdvisorW. W. Hwu,

I 1989.

[Chan90] P.P. Chang and W. W. Hwu, "Control Flow Optimization and Instruction Memory

I System Design Tradeoffs," Unpublished Report, draft available upon request, 1990.
[Chow87] P. Chow and M. Horowitz, "Architecture Tradeoffs in the Design of MIPS-X", Pro-

ceedings of the 14th Annual International Symposium on Computer Architecture,

I Pittsburgh, Pennsylvania, June, 1987.

[DeRo88] J.A. DeRosa and H. M. Levy, "An Evaluation of Branch Architectures", Proceedings

I of the 15th International Symposium on Computer Architecture, Honolulu, Hawaii,
May, 1988.

I [Ditz87] D.R. Ditzel and H. R. McLeUan, "Branch Folding in the CRISP Microprocessor:Reducing Branch Delay to Zero", Proceedings of the 14th Annual International Sym-
posium on Computer Architecture, pp.2-9, Pittsburgh, Pennsylvania, June, 1987.

I [Emer84] J. Emer and D. Clark, "A Characterization of Processor Performance in the VAX-
11/780", Proceedings of the 1lth Annual Symposium on Computer ,_rchitecture, June,

I 1984.
45

!

1990018032-047

r_^_,,_nl ¢" e Foot A P. k_ rt_,_m_n, "P_rcnlatlnn of Code to Enhance Parallel Dispatching

and Execution", IEEE Transactions on Computers, Vol. C-21, pp.1411-1415, Decem-
ber, 1972.

[Tjad70] G.S. Tjaden and M. J. Flynn, "Detection _ ld Parallel Execution of Independent In-
structions", IEEE Transactions on Computers, vol.c-] 9, no.10, pp. 889-895, October,
1970.

[Gros82] T.R. Gross and J. L. Hennessy, "Optimizing Delayed Branches", Proceedings of the
15th Microprogramming Workshop, pp.l14-120, October, 1982.

[HennS1] J.L. Hennessy, N. Jouppi, F.Basket*, and 3. Gill, "MIPS: A VLSI Processor Archi-
tecture", Proceedings of the CMU Conference on VLSI Systems and Computations,
October 1981.

[Hi1186] M. Hill and etal, "Design Decisions in SPUR", IEEE Computer, pp.8-22, November,
1986.

[Hors90] R.W. Horst, R. L. Harris, and R. L. Jaxdine, "Multiple Instruction Issue in the Non-
Stop Cyclone Processor," Proc. International Symposium on Computer Architecture,
May 1990.

[Hsu86] P.Y.T. Hsu and E. S. Davidson, "Highly Concurrent Scalar Processing," Proceedings
of the 13th International Symposium on Computer Architecture, pp. 386-395, Tokyo,
Japan, June 1986.

[Hwu87] W.W. H_t and Y. N. Part, "Checkpoint Repair fc,f High Performance Out-of-order
Execution Machines", IEEE Transactions on Computers, IEEE, December, 1987.

[Hwu88] W.W. Hwu, "Exploiting Concurrency to Achieve High Performance in a Single-
chip Microarchitecture'. Ph.D. Dissertation, Computer Science Division Report, no.
UCB/CSD 88/398, University ef California, Berkeley, 5a,mary, 1_JS.

[Hwu89a] W.W. Hwu, T. M. Conte, and P. P. Chang, "Comparing Software and Hardware
Schemes For Reducing the Cost of Branches", Proceedings of the 16th Annual Inter-

national Symposium on Computer Architecture, Jerusalem, Israel, May, 1989.

[Hwu89b] W.W. Hwu and P. P. Chang, "InlJne Function Expansion for Compiling Realistic C
Programe," ACM SIGPLAN '89 Confe.ence on Programming Language Design and
Imp',ementation, Portland, Oregon, June 21-23, 1989.

[Inte89] Intel, "i860(TM) 64-bit Microprocessor," Order No. 240296-002, Santa Clara, Califor-
nia, April 1989.

[Joup89] N.P. Jouppi and D. W. Wall, "Available Instruction-Level Parallel" _m for Superscalar
and Superpipelined Machines," Third International Conference o, .krchitectural Sup-

port for Programming Languages and Operating Systems, pp.272-282, April, 1989.

[Kane87] G. Kane, MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, NJ, 1987.

46

1990018032-048

I
I
I [Kogg81] P.M. Kogge, Tt,e Architecture of 1-'zpehned Computers, pp.237-243,

McGraw-Hill,

1981.

I [Kuck72] D.J. Kuck, Y. Murax_ka, and S. Chen, "On the Number of Operations SimultaneouslyExecutable in Fortran-like Programs and Their Resulting Speedup", IEEE Transac

tions on Computers, Vol. C-21, pp.1293-1310, December, 1972.

I [Lee84] J.K.F. Lee and A. J. Smith, "Branch Prediction Strategies and Branch Target Buffer
Design", IEEE Computer, January, 1984.

I and J.L. "Reducing the Cost of Branches", The 13th Inter-[Mc 86] S. McFarling Hennessy,

national Symposium on Computer Architecture Conference Proceedings, pp.396 403,
Tokyo, Japan, June, 1986.

I [Mele89] Charles Melear, "The Design of the 88000 RISC Family", IEEE MICRO, pp.26-38,
April, 1989.

I [Nico88] J-D. Nicoud, "Video RAMs: Structure and Applications," IEEE MICRO, pp.8-27.
February, 1988.

I A. Nicolau and J. _ "Measuring the Parallelism Available for "_%ry Long[Nico84]
lmst...-uction Word Architectures", IEEE Transactions on Compu'er, vol.C. 23, ae.ll,

pp.968-976. November, 1984.

I [Part85] ¥. N. Part, W. W. Hwu, and M. C. Shebanow, "HPS, A New Microarchitecture: Ra-
tionale and hltroduction', Proceedings of the 18th International Microprogramming

,_cJ _sf,_.,p,pp.ll_3-10._, A._.ilomar_CA, December, 1985.

[Patt82] [_ A. Patterson and C,H. _equin, "A VLSI RISC', IEEE Computer, pp.8-21, Septem-

i oer, 1982.[Ples87] A. It. Pleszkun, J. R. Goodman, W.-C. ttsu, It. T. Joersz, G. B_er, P. Woest, and
P. B. Schechter, "WISQ: A Restartable Architecture Using Queues", Proceedings of

I the 14th Intt national Symposium on Computer Architecture Conference, pp.290-299,June, 1987.

I [Ples88] A A. R. Pleszkun, G. S. oohi, Multiple Instruction I3sue and Single-chip Frocessors,Proceedings of the 21st Annual Workshop on Microprogramming and Microarchitec-
ture, San Diego, California, Nov. 1988.

I [R.adin 82] Radin, Minicomputer", Proceedings Symposium on
G. "The 801 of the Architectural

Support for Programming Languages and Operating Systems, pp.39-47, March, 1982.

I [Rude85] R. RudeU, "Espresso-MV: Algorithms for Multiple-Valued Logic Minimization", Proc.Cust. Int. Circ. Conf., May, 1985.

i [Smith81J J.E. Smith, "A Study of Branch Prediction Strategies", Proceedings of the 8th Inter-national Symposium on Computer Architecture, pp.135-148, June, 1981.

I
47

I

1990018032-049

/

[Smith85] J. r_,..., ,,,_..1 +_+;,,., ,_{P,._,-d_ lnt_rr,,pt_ in _in_iined Pro-
cessors', Proceedings of the llth Annum Symposium on Computer Architectures,
Boston, Massachusetts, June 17-19, 1985.

[Smith89] M.D. Smith, M. Johnson, and M. A. Horowitz, "Limits on Multiple Instruction Issue",
Third International Conference on Architectural Support for Programming Languages

and Operating Systems, pp.290-302, April, 1989.

[Sun87] SUN Microsystems, "The SPARC(TM) Architecture Manual," SUN Microsystev, s,
Part No. 800-1399-07, Revision 50, Mountain View, California, August 1987.

[Toma67] R.M. Tomasulo, "An Efficier,t Algorithm for Exploiting Multiple Arithmetic Units",
IBM Journal of Research and Development, vol.ll, pp.25-33, January, 1967.

[WeisS4] S. Weiss and J. E. Smith, "Instruction Issue Logic in Pipelined Supercomputers",
IEEE Transactions on Computers, vol.C-33, pp.1013-1022, IEEE, November, 1984.

48

1990018032-050

